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Abstract
It is shown that for solvable fermionic and bosonic lattice systems, the reduced
density matrices can be determined from the properties of the correlation
functions. This provides the simplest way to these quantities which are used in
the density-matrix renormalization group method.

PACS numbers: 03.65.Fd, 05.10.Cc, 05.30.−d, 71.10.Fd

Reduced density matrices for solvable fermionic and bosonic lattice models have been studied
in recent years because such operators play a central role in the density-matrix renormalization
group (DMRG) method [1–3]. In contrast to the quantities used in other cases, they refer to
a subset of sites, not to a subset of particles. It has been found that they have exponential
form e−H, where H is again a solvable fermionic or bosonic operator, confined to the chosen
subsystem [4–6]. This was derived by starting from the total density matrix (usually for the
ground state) and integrating the degrees of freedom outside the subsystem. In the case of
fermions, this can be done using Grassmann variables. The procedure is straightforward, but
also somewhat tedious. However, it was noted recently that for a hopping model the final
result involves only the one-fermion correlation functions of the system [7]. In the following,
it is shown that one can go a step further and base the considerations completely on correlation
functions. The density matrices then follow in a very simple and transparent way.

Consider first a system of free fermions hopping between lattice sites. The corresponding
Hamiltonian has the general form

Ĥ = −
∑
n,m

t̂nmc†ncm (1)

where the ‘hat’ denotes quantities of the total system. This Hamiltonian has Slater determinants
as eigenstates. Let |�〉 be such a state and

Ĉnm = 〈
c†ncm

〉
(2)

the one-particle function in this state. The Ĉnm form a Hermitian matrix Ĉ. Because |�〉 is a
determinant, all the higher correlation functions can be expressed by Ĉ, e.g.〈

c†nc
†
mckcl

〉 = 〈
c†ncl

〉〈
c†mck

〉 − 〈
c†nck

〉〈
c†mcl

〉
. (3)
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Now consider a subsystem of M sites for which the notation i, j will be used. By definition,
the reduced density matrix ρ reproduces all expectation values in the subsystem. Therefore,
the one-particle function is

Cij = Tr
(
ρc

†
i cj

)
(4)

and the higher functions must factorize as in (3). According to Wick’s theorem, this property
holds if ρ is the exponential of a free-fermion operator [8]. Thus one can write

ρ = K e−H (5)

where K is a normalization constant and

H =
∑
i,j

Hij c
†
i cj . (6)

Let φk(i) be the eigenfunctions of H with eigenvalues εk. Then the transformation to new
fermion operators ak,

ci =
∑

k

φk(i)ak (7)

diagonalizes H and ρ becomes

ρ = K exp

(
−

M∑
k=1

εka
†
kak

)
. (8)

Using this in (4) together with Tr(ρ) = 1 gives

Cij =
∑

k

φ∗
k (i)φk(j)

1

eεk + 1
. (9)

On the other hand, H has the representation

Hij =
∑

k

φk(i)φ
∗
k (j)εk. (10)

Therefore the eigenvalues ζk of C and εk of H are related by

ζk = (eεk + 1)−1 (11)

and in matrix form, with the prime denoting the transpose,

H ′ = ln[(1 − C)/C]. (12)

This is the formula found in [7]. Due to its form, ρ is completely determined by the M × M

matrix C. One should note that any one-particle correlation function can be expressed in such
a way through a proper free-fermion operator. The only condition is that the eigenvalues ζk

of C lie between 0 and 1 and this is always the case, since they can be written in the form〈
a
†
kak

〉
with new fermion operators [9]. However, for a state which is not a Slater determinant,

the free-fermion density matrix found above would in general give wrong results for other
expectation values.

These considerations can be extended to systems with pair creation and annihilation
which can be diagonalized by a Bogoliubov transformation. The eigenstates are then Slater
determinants in the new Fermi operators. In such a state, ‘anomalous’ correlation functions

F̂ nm = 〈
c†nc

†
m

〉
(13)

exist which also occur in the factorization equations. Thus (3) is changed into〈
c†nc

†
mckcl

〉 = 〈
c†ncl

〉〈
c†mck

〉 − 〈
c†nck

〉〈
c†mcl

〉
+

〈
c†nc

†
m

〉〈
ckcl

〉
. (14)
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To reproduce this, ρ has to be an exponential with an operator H which also contains pair
creation and annihilation processes,

H =
∑
i,j

[
c
†
i Aijcj +

1

2

(
c
†
i Bij c

†
j + h.c.

)]
. (15)

Since now two matrices appear in H, one needs additional input, which is provided by the
correlation functions Fij . By following the usual diagonalization procedure for H [10] and
calculating C and F one can then show that

[(C − 1/2 − F)(C − 1/2 + F)]ij = 1

4

∑
k

φk(i)φ
∗
k (j)th2(εk/2) (16)

where the φk(i) are the orthonormal eigenfunctions of (A−B)(A+B) and the εk are again the
single-particle eigenvalues ofH. Thus one can find the εk from the eigenvalues of the matrix on
the left-hand side of (16). This matrix can be written as KK†/4 where K/2 = (C −1/2−F),
since F is anti-Hermitian. Having diagonalized KK†, the matrices A and B can be obtained as

Aij = 1

2

∑
k

[φk(i)ψ
∗
k (j) + ψk(i)φ

∗
k (j)]εk (17)

Bij = −1

2

∑
k

[φk(i)ψ
∗
k (j) − ψk(i)φ

∗
k (j)]εk (18)

where the functions ψk follow from th(εk/2)ψk = −K†φk. For F = 0, one has
K = K†, ψk = φk and therefore B = 0, while the result for A corresponds to (10). If
one turns a hopping model into that with pair terms via a particle–hole transformation, (16)
follows from (9). To make contact with the treatment in [6], one first relates the matrix Ĝ,
used there to write an even-parity eigenstate in the form

|�〉 = C exp

{
1

2

∑
n,m

Ĝnmc†nc
†
m

}
|0〉 (19)

where |0〉 is the vacuum of the cn, to the quantities appearing here. For the ground state, Ĝ

connects the two sets of functions φ̂p and ψ̂p arising in the diagonalization of the Hamiltonian.
The same holds for K̂/2 = (Ĉ − 1/2 − F̂ ) and one finds that Ĝ = (K̂ − 1)/(K̂ + 1). Using
this, one can show that the matrix in (A9) of [6] equals 2(1 + KK†)/(1 − KK†).1 Therefore
the eigenvalue equation used in [6] to determine 2chεk is an alternative version of relation
(16) and both approaches are fully consistent.

In a similar way, one can treat systems of coupled harmonic oscillators. In this case, it is
convenient to consider the correlation functions of positions and momenta,

X̂nm = 〈xnxm〉 P̂ nm = 〈pnpm〉. (20)

In the ground state, which is a Gaussian in the coordinates, one then has factorization formulae
such as

〈xnxmxkxl〉 = 〈xnxm〉〈xkxl〉 + 〈xnxk〉〈xmxl〉 + 〈xnxl〉〈xmxk〉 (21)

which are non-trivial even if all indices are equal. They hold also if the expectation values are
calculated with an exponential operator quadratic in the x and p. Therefore ρ has the form (5)
with

H = 1

2

∑
i,j

[Tijpipj + Vijxixj ]. (22)

1 In [6], equation (15) has to read α = a11 − ca22c′ and α/2 should appear in (16).
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The diagonal form is again (8) but with bosonic operators and the εk follow from the eigenvalues
ν2

k of the matrix XP via

cth(εk/2) = νk/2. (23)

If the subsystem is a single oscillator i, there is only one ν given by
〈
x2

i

〉〈
p2

i

〉
. For a homogeneous

system, this can also be expressed through the frequency moments of the normal modes as
〈1/ω〉〈ω〉. The general equations are again equivalent to those obtained previously in [5].

This shows that the way to reduced density matrices associated with eigenstates of solvable
fermionic or bosonic systems can be shortened considerably. The results are also valid for
systems at finite temperature as considered in [7]. In connection with the DMRG, the main
aim has been to determine the spectra of the ρ and their general features. Here the present
approach helps if the necessary correlation functions have simple analytic expressions. This
is the case for nearest-neighbour hopping on a chain, or on a square lattice for half filling.
Then only the diagonalization of the matrix C remains. There are some limitations, because
if large εk occur, the corresponding eigenvalues of C are exponentially close to 0 or 1. Also
the relation of ρ to the corner transfer matrix of a two-dimensional model [4, 11] is not visible
unless one determinesH in its non-diagonal form. Still, one comes rather close to an analytical
solution, and working with the correlations can give additional insight into the nature of the
problem.

Note added. Formulae similar to those given here can also be found in a recent paper on entangled quantum states
[12].
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[12] Vidal G, Latorre J I, Rico E and Kitaev A 2002 Preprint quant-ph/0211074


